- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Arnulf, Adrien (1)
-
Canales, Juan Pablo (1)
-
Carbotte, Suzanne M. (1)
-
Harding, Alistair (1)
-
Kent, Graham (1)
-
Lee, Michelle (1)
-
Nedimović, Mladen (1)
-
Spiegelman, Marc (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Magmatic systems are composed of melt accumulations and crystal mush that evolve with melt transport, contributing to igneous processes, volcano dynamics, and eruption triggering. Geophysical studies of active volcanoes have revealed details of shallow-level melt reservoirs, but little is known about fine-scale melt distribution at deeper levels dominated by crystal mush. Here, we present new seismic reflection images from Axial Seamount, northeastern Pacific Ocean, revealing a 3–5-km-wide conduit of vertically stacked melt lenses, with near-regular spacing of 300–450 m extending into the inferred mush zone of the mid-to-lower crust. This column of lenses underlies the shallowest melt-rich portion of the upper-crustal magma reservoir, where three dike intrusion and eruption events initiated. The pipe-like zone is similar in geometry and depth extent to the volcano inflation source modeled from geodetic records, and we infer that melt ascent by porous flow focused within the melt lens conduit led to the inflation-triggered eruptions. The multiple near-horizontal lenses are interpreted as melt-rich layers formed via mush compaction, an interpretation supported by one-dimensional numerical models of porous flow in a viscoelastic matrix.more » « less
An official website of the United States government
